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§1. Introduction.

The Schwarzian derivative of an analytic function is a basic tool in complex
analysis. It appeared as early as 1873, when H. A. Schwarz sought to generalize
the Schwarz–Christoffel formula to conformal mappings of polygons bounded by
circular arcs. More recently, Nehari [5, 6, 7] and others have developed important
criteria for global univalence in terms of the Schwarzian derivative, exploiting its
connection with linear differential equations. Osgood and Stowe [8] have unified
these various univalence criteria through a general theorem involving the curvature
of a metric.

The purpose of the present paper is to offer a definition of Schwarzian derivative
that applies more generally to complex-valued harmonic functions. The formula is
derived in a natural way by passing to the minimal surface associated locally with
a given harmonic function. The derivation then appeals to a definition given by
Osgood and Stowe [9] for the Schwarzian derivative of a conformal mapping between
arbitrary Riemannian manifolds. The resulting expression reduces to standard
form when the harmonic function is analytic, and various classical properties of
Schwarzian derivatives generalize in appropriate ways, suggesting that the definition
we propose is the “right” one.

The Schwarzian derivative of a locally univalent analytic function f is defined
by

S(f) = (f ′′/f ′)′ − 1
2 (f

′′/f ′)2 .

The key property is its invariance under postcomposition with Möbius transforma-
tions. If

T (z) =
az + b

cz + d
, ad− bc ̸= 0,

is any Möbius transformation, then S(T ◦ f) = S(f). This is a special case of the
transformation formula

S(g ◦ f) = (S(g) ◦ f)(f ′)2 + S(f) ,
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since S(T ) = 0 for Möbius transformations. Note also that S(f ◦ T ) = (S(f) ◦
T )(T ′)2.

For an arbitrary analytic function φ, the general function f with Schwarzian
S(f) = 2φ has the form f = w1/w2 , where w1 and w2 are arbitrary linearly
independent solutions of the differential equation w′′ +φw = 0. Two consequences
are:

(i) If S(f) = 0, then f is a Möbius transformation;
(ii) If S(g) = S(f), then g = T ◦ f for some Möbius transformation T .

To set the stage for later discussion, we now give a brief overview of harmonic
mappings and their associated minimal surfaces. Details and further information
may be found in [2] or [10]. We use the standard notation
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for the z- and z-derivatives, where z = x + iy. Recall that the Laplacian is given
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A complex-valued function f that is harmonic in a simply connected domain
Ω ⊂ C has the canonical representation f = h + g, where f and g are analytic in
Ω and g(z0) = 0 for some prescribed point z0 ∈ Ω. According to a theorem of H.
Lewy [4], f is locally univalent if and only if its Jacobian |fz|2− |fz|2 = |h′|2− |g′|2
does not vanish. It is said to be sense-preserving if its Jacobian is positive. Then
h′(z) ̸= 0 and the analytic function ω = g′/h′, called the (second) complex dilatation
of f , has the property |ω(z)| < 1 in Ω. Throughout this paper we will assume that
f is locally univalent and sense-preserving, and we call f a harmonic mapping.

The harmonic mappings with dilatation ω(z) ≡ 0 are precisely the conformal
mappings. More generally, it is easily seen that harmonic mappings with constant
dilatation ω(z) ≡ α have the form f = h + αh for some analytic locally univalent
function h.

A harmonic mapping f = h+g can be lifted locally to a regular minimal surface
given by conformal (or isothermal) parameters if and only if its dilatation is the
square of an analytic function: ω = q2 for some analytic function q with |q(z)| < 1.
Equivalently, the requirement is that any zero of ω be of even order, unless ω(z) ≡ 0.
For such harmonic mappings f = u+ iv, the minimal surface has the Weierstrass–
Enneper representation

u = Re

{∫ z

z0

p(1 + q2) dζ

}
,

v = Im

{∫ z

z0

p(1− q2) dζ

}
,

w = 2 Im

{∫ z

z0

pq dζ

}
,
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where p = h′ and w = F (u, v) is the height of the surface. The metric of the surface
has the form ds = ρ|dz|, where ρ = ρ(z) > 0. Here the function ρ takes the form

ρ = |h′|+ |g′| = |h′|(1 + |ω|) = |p|(1 + |q|2).

A general theorem of differential geometry says that if any regular surface is
represented by conformal parameters, so that its metric has the form ds = ρ|dz|
for some for some positive function ρ, then the Gauss curvature of the surface is
K = −ρ−2 ∆(log ρ), where ∆ denotes the Laplacian. This quantity K is also known
as the curvature of the metric. In our special case of a minimal surface associated
with a harmonic mapping f = h+ g, the formula for curvature reduces to

K = − 4|q′|2

|p|2(1 + |q|2)4
,

where p = h′ and q2 = ω = g′/h′.
Our definition of the Schwarzian derivative of a harmonic mapping f is given in

terms of the metric ds = ρ|dz| of the associated minimal surface. The formula is

S(f) = 2
{
(log ρ)zz − ((log ρ)z)

2
}
.

The geometric considerations that lead to this formula will be described in Section
4. First, however, we shall take the formula as given and explore some of its basic
properties.

§2. Properties of the generalized Schwarzian.

Observe first that if f is analytic, then ρ = |f ′| and ω = 0, so that the associated
minimal surface is the uv–plane. Since

log ρ = 1
2 (log f

′ + log f ′) ,

we see that (log ρ)z = 1
2f

′′/f ′, and the generalized Schwarzian takes the form

S(f) = 2
{
(log ρ)zz − ((log ρ)z)

2
}
= (f ′′/f ′)′ − 1

2 (f
′′/f ′)2 ,

in agreement with the classical formula for the Schwarzian derivative of an analytic
function. More generally, if f = h + αh, where h is analytic and α is a complex
constant with |α| ̸= 1, then ρ = (1 + |α|)|h′| and again S(f) = S(h).

If f = h+ g is an arbitrary harmonic mapping with dilatation ω = q2, then we
can write

ρ = |h′|(1 + |q|2) = |h′|(1 + qq) ,
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which gives

(log ρ)z = 1
2

h′′

h′
+

q′ q

1 + |q|2
.

Further calculations then lead to the expression

S(f) = S(h) +
2 q

1 + |q|2

(
q′′ − q′h′′

h′

)
− 4

(
q′ q

1 + |q|2

)2

.

Note again that S(f) = S(h) when ω = q2 is constant. It should also be observed
that the Schwarzian derivative is well defined (and single-valued) in a deleted neigh-
borhood of a point where ω has a zero of odd order, since the above formula is in-
variant under change of sign in q =

√
ω. For instance, if f has dilatation ω(z) = z,

the formula reduces to

S(f) = S(h)− |z|
(1 + |z|)z

(
1

2z
+
h′′

h′

)
−

(
|z|

(1 + |z|)z

)2

.

If q has a zero of order at least 2 at some point z0, then S(f) tends to S(h) as
z → z0.

If f = h + g is sense-reversing, its Schwarzian derivative can be defined in a
similar manner. Because of the symmetry in the formula ρ = |h′| + |g′|, it is
clear that S(f) = S(f). Thus there is no essential loss of generality in restricting
attention to Schwarzians of sense-preserving harmonic mappings.

We now investigate the behavior of the generalized Schwarzian under composi-
tion. If φ is a locally univalent analytic function for which the composition f ◦φ is
defined, then f ◦ φ is again a harmonic mapping and

ρf◦φ = (ρf ◦ φ)|φ′| .

A calculation then gives

S(f ◦ φ) = (S(f) ◦ φ)(φ′)2 + S(φ) ,

a direct generalization of the transformation formula for the classical Schwarzian
of an analytic function f .

As for postcompositions, if f is harmonic and L is an affine mapping of R2, then
L ◦ f is harmonic. However, the Schwarzian of L ◦ f will not be equal to that of f
unless L is conformal. This will be clear from results in the next section. When L
is a conformal affine map, then ρf and ρL◦f are proportional by a constant factor,
hence the Schwarzians are equal.

We next show that the Schwarzian S(f) is analytic only for harmonic mappings
of the form f = h+αh with |α| < 1. In fact, we shall prove the following theorem.
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Theorem 1. For a harmonic mapping f with dilatation ω = q2, the following are
equivalent:

(i) S(f) is analytic.
(ii) The curvature K of the conformal metric associated with f is constant.
(iii) K ≡ 0, so that the corresponding minimal surface is a plane.
(iv) The dilatation of f is constant.
(v) f = h + αh for some analytic locally univalent function h and for some

complex constant α with |α| < 1.

(vi) The Weierstrass–Enneper lifting f̃ = (u, v, w) of f to its corresponding
minimal surface has the form

f̃(z) = A

(
Re{h(z)}
Im{h(z)}

)
,

where A : R2 → R3 is a linear conformal mapping.

Proof. (i) =⇒ (ii). The curvature of the metric ρ = ρf associated with f is

K = − 1

ρ2
∆(log ρ) = −4 (log ρ)zz

ρ2
.

A simple calculation yields

−1

4
Kz =

1

ρ2
[
(log ρ)zz − ((log ρ)z)

2
]
z
=

1

2ρ2
[S(f)]z = 0

if S(f) is analytic. Thus K is constant.
(ii) =⇒ (iii). This says that a minimal surface with constant curvature must lie

in a plane. Referring to our formula for the curvatureK in terms of the Weierstrass–
Enneper parameters p and q, and passing to logarithms, we see that ifK is constant,
then

log(1 + |q|2) = 1
2 log |q′/p|+ c

for some constant c. Thus log(1 + |q|2) is a harmonic function. But a calculation
gives [

log(1 + |q|2)
]
zz

=

[
q′ q

1 + |q|2

]
z

=
|q′|2

(1 + |q|2)2
,

so log(1+ |q|2) is harmonic if and only if q′ = 0. But then the formula for curvature
shows that K = 0.

(iii) =⇒ (iv). If K = 0, then q′ = 0, so q is constant and the dilatation ω = q2

is constant.
(iv) =⇒ (v). This was already noted above, but here are the details. If a

harmonic mapping f = h + g has constant dilatation, then g′ = αh′ for some
constant α with |α| < 1. Integration gives g = αh + β for some constant β. But
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since |α| ̸= 1, a bit of linear algebra shows that the additive constant β can be
absorbed into h and we can write, with slight change of notation, f = h + αh
for some analytic function h. Finally, since f is locally univalent and the affine
mapping z 7→ z + αz is invertible, we see that h is locally univalent.

(v) =⇒ (i). As observed above, S(h+αh) = S(h). We now see that (i) through
(v) are equivalent.

(iv) =⇒ (vi) =⇒ (i). If q is a constant q0, then one sees directly from the
Weierstrass–Enneper representation, where p = h′, that

u = Re{(1 + q20)h(z)} , v = Im{(1− q20)h(z)} , w = 2 Im{q0h(z)} ,

taking h(z0) = 0. Hence f̃(z) = A

(
Re{h(z)}
Im{h(z)}

)
, where

A =

Re{1 + q20} −Im{q20}
−Im{q20} Re{1− q20}
2 Im{q0} 2Re{q0}

 .

The columns are orthogonal and both have length 1+ |q0|2. Thus (iv) implies (vi).
Finally, if (vi) holds, then the metric ρ|dz| induced by f is a multiple of |h′(z)||dz|,
and S(f) is analytic. Thus (vi) implies (i), and the proof is complete.

Remark. The proof of the theorem contains an observation about general conformal
metrics, namely that ρ|dz| has constant curvature if and only if (log ρ)zz−((log ρ)z)

2

is an analytic function.
Recall now that the analytic functions with vanishing Schwarzian derivatives are

precisely the Möbius transformations. With appeal to Theorem 1, we can now
obtain a corresponding result for harmonic mappings.

Theorem 2. A harmonic mapping f has vanishing Schwarzian derivative S(f) = 0
if and only if it has the form f = h + αh for some Möbius transformation h and
some complex constant α with |α| < 1.

Proof. If f = h + αh for a Möbius transformation h, then S(f) = S(h) = 0.
Conversely, suppose that a harmonic mapping f = h+ g has Schwarzian derivative
S(f) = 0. Then by Theorem 1, we can conclude that f has constant dilatation
ω = g′/h′, so that |g′| = c|h′| for some constant c ≥ 0. It follows that

ρ = |h′|+ |g′| = (1 + c)|h′| ,

so that 0 = S(f) = S(h), and h is a Möbius transformation. Also, since ω = α for
some constant α with |α| < 1, we see that g = αh+ β for some constant β. Again
the additive constant β can be absorbed into the Möbius transformation h, and so
with change of notation we can write f = h+ αh for some Möbius transformation
h.
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The theorem shows that a harmonic mapping with S(f) = 0 is injective and
extends to a harmonic mapping of C onto itself. We define a harmonic Möbius
transformation to be a harmonic mapping of the form f = h + αh, where h is a
(classical) Möbius transformation and α is a complex constant with |α| < 1. The-
orem 2 says that these are precisely the harmonic mappings with S(f) = 0. Since
a harmonic Möbius transformation is the composition of a Möbius transformation
with an affine mapping, we can see that a harmonic Möbius transformation maps
circles to ellipses. The basic transformation formula shows that S(f ◦ φ) = S(φ) if
φ is analytic and f is a harmonic Möbius transformation.

The next problem is to characterize the class of harmonic mappings with pre-
scribed Schwarzian. This more difficult task will be carried out in the next two
sections. We close the present section with some simple examples.

First consider the harmonic mapping f(z) = z + 1
3 z

3, which has dilatation

ω(z) = z2 and maps the unit disk onto the domain inside a hypocycloid of 4 cusps
inscribed in the circle |w| = 4

3 . It lifts to the classical Enneper surface. Note that

ρ = |h′|+ |g′| = 1 + |z|2, so that the Schwarzian derivative is

S(f) = − 4 z2

(1 + |z|2)2
.

The canonical harmonic mapping f onto a square domain inscribed in the unit
circle has dilatation ω(z) = z2 and lifts to Scherk’s first surface. (See [2], Chapter
10.) It has the form f = h+ g, where

h′(z) =
2
√
2

π(1 + z4)
, g′(z) = z2h′(z) .

Thus

ρ = |h′|+ |g′| = 2
√
2

π

1 + |z|2

|1 + z4|
,

and a calculation gives

S(f) = − 12z2

(1 + z4)2
− 4

(
z3

1 + z4
− z

1 + |z|2

)2

.

Similarly, it can be shown [3] that the univalent harmonic mapping

f(z) = − 1
2

4∑
n=1

in log |z − in|

has dilatation ω(z) = z2 and lifts to Scherk’s “saddle-tower” surface. It has the
form f = h+ g, with

h′(z) =
1

1− z4
, g′(z) =

z2

1− z4
.
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Thus

ρ = |h′|+ |g′| = 1 + |z|2

|1− z4|
,

and its Schwarzian derivative is found to be

S(f) = − 12z2

(1− z4)2
− 4

(
z3

1− z4
− z

1 + |z|2

)2

.

Next consider the harmonic mapping

f(z) = log

∣∣∣∣1 + z

1− z

∣∣∣∣− z ,

which results from horizontal shearing of the conformal mapping φ(z) = z with
dilatation ω(z) = z2. Its range is symmetric with respect to the real and imaginary
axes and it occupies an unbounded portion of the horizontal strip |Im{w}| < 1.
Here f = h+ g, where

h(z) = 1
2 log

1 + z

1− z
, g(z) = h(z)− z .

Thus

ρ = |h′|+ |g′| = 1 + |z|2

|1− z2|
,

and a simple calculation gives the Schwarzian derivative

S(f) = 2

(
1

(1− z2)2
− 2z2

(1 + |z|2)2
− 2|z|2

(1 + |z|2)(1− z2)

)
.

The general harmonic shear of a conformal mapping φ convex in the horizontal
direction, with dilatation ω = q2, has the form f = h + g, where h − g = φ
and g′ = q2h′. (See [1] or [2].) Solving the pair of linear equations, one finds
h′ = φ′/(1− q2). A calculation then yields the formula

S(f) = S(φ) +
2(q′

2
+ (1− q2)qq′′)

(1− q2)2
− 2qq′

1− q2
φ′′

φ′

+
2 q

1 + |q|2

{
q′′ − q′

(
φ′′

φ′ +
2qq′

1− q2

)}
− 4

(
q′ q

1 + |q|2

)2

.

If φ is the Koebe function k(z) = z/(1− z)2 and q(z) = z, the formula reduces to

S(f) = −4

(
1

(1− z)2
+

z

1 + |z|2

)2

.

§3. Does S(f) determine f?

Let us ask the question in another way. If two harmonic mappings f and F have
the same Schwarzian derivative, how are f and F related? One form of the answer
is given by the following theorem, where the curvatures of the associated conformal
metrics play an essential role.
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Theorem 3. Let f = h+ g and F = H +G be harmonic mappings of a common
domain Ω. If S(f) = S(F ), then

(a) The curvatures of the associated conformal metrics are equal: K(ρf ) =
K(ρF ).

(b) If the curvatures are not constant, then the metrics are homothetic; that is,
ρf = c ρF for some constant c > 0.

(c) If the curvatures are constant, then both are zero, and f = h + αh, F =
H + βH, and H = T (h) for some analytic univalent functions h and H,
some complex constants α and β with |α| < 1 and |β| < 1, and some analytic
Möbius transformation T .

Conversely, if either (b) or (c) holds, then the curvatures are equal and S(f) =
S(F ).

The proof requires some preparation and will be given in Section 5. Here we
shall examine some of the algebraic and geometric aspects of the condition that
ρf = c ρF . In terms of the respective Weierstrass–Enneper parameters (p, q) and
(P,Q), the equation is |p|(1 + |q|2) = c|P |(1 + |Q|2). For the calculations that
follow it will be a little easier to absorb the constant into P and thus to consider
the condition as

|p|(1 + |q|2) = |P |(1 + |Q|2) . (1)

How are the parameters (p, q) and (P,Q) related? One obvious possibility is that
P = eiθp and Q = eiϕq. But there are other, less obvious possibilities.

We introduce the following transformations of the pair (p, q):

Rp(θ) : (p, q) 7→ (eiθp, q) ,

Rq(ϕ) : (p, q) 7→ (p, eiϕq) ,

I(ξ) : (p, q) 7→
(
(q − ξ)2

1 + |ξ|2
p ,

ξ

ξ

ξq + 1

ξ − q

)
, ξ ∈ C , ξ ̸= 0 ,

I(0) : (p, q) 7→ (pq2,−1/q) .

The following relationships are readily verified:

Rp(θ1)Rp(θ2) = Rp(θ1+θ2) ; Rq(ϕ1)Rq(ϕ2) = Rq(ϕ1+ϕ2) ; Rp(0) = Rq(0) = Id ;

Rp(θ)Rq(ϕ) = Rq(ϕ)Rp(θ) ; Rp(θ)I(ξ) = I(ξ)Rp(θ) ;

Rq(ϕ)I(ξ)Rq(−ϕ) = I(eiϕξ)Rp(−2ϕ) ; I(ξ1)I(ξ2) = I(ξ3)Rq(ϕ)Rp(θ) for

ξ1 + ξ2 ̸= 0 , ξ3 =
ξ1

ξ1

ξ1ξ2 − 1

ξ1 + ξ2
, eiϕ =

ξ1

ξ1

ξ2
ξ2

ξ1ξ2 − 1

ξ1ξ2 − 1
, eiθ = e2iϕ

(ξ1 + ξ2)
2

|ξ1 + ξ2|2
;

I(ξ)I(−ξ) = Rp(θ) for eiθ =
ξ2

ξ
2 , ξ ̸= 0 ; I(0)2 = Id .
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With these formulas available, it is clear that the transformations Rp(θ), Rq(ϕ),
and I(ξ) for varying θ, ϕ, and ξ generate a group G under composition. We will
explain the geometry of these transformations in terms of the minimal surface, but
first we intend to show that the pairs (p, q) and (P,Q) satisfy (1) if and only if they
are related by an element of G.

It is easy to see that if (P,Q) = ψ(p, q) for some ψ ∈ G then the relation (1)
holds. For this we need only check that the quantity |p|(1+ |q|2) is invariant under
each of the transformations Rp(θ), Rq(ϕ), and I(ξ). Suppose conversely that the
pairs of functions (p, q) and (P,Q) satisfy equation (1). Our analysis will be local,
so we may assume that P , Q, and p have no zeros. We may then write

1 + |q|2 =
|P |
|p|

(1 + |Q|2) = |m|2 + |n|2 , (2)

where m2 = P/p and n = mQ. Take the Laplacian of both sides of (2) to get

|q′|2 = |m′|2 + |n′|2 .

Unless m is constant, a case to be treated later, this can be written as

|q′|2

|m′|2
= 1 +

|n′|2

|m′|2
.

The logarithm of the left-hand side is harmonic, while that of the right-hand side
will be harmonic if and only if n′/m′ = α, a constant. Thus

n′ = αm′ , q′ = eiθ
√
1 + |α|2m′ ,

and so for constants β, γ

n = αm+ β , q = eiθ
√
1 + |α|2m+ γ . (3)

Inserting this into (2), we obtain

1+(1+|α|2)|m|2+|γ|2+2Re{eiθγ
√
1 + |α|2m} = |m|2+|α|2|m|2+|β|2+2Re{αβm} .

Hence
2Re{(eiθγ

√
1 + |α|2 − αβ)m} = |β|2 − |γ|2 − 1 .

This means that unless eiθγ
√

1 + |α|2 − αβ = 0 , the values of m lie on a line. But
this would make m constant, so we conclude that indeed

eiθγ
√
1 + |α|2 = αβ , (4)
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and also that
|β|2 = 1 + |γ|2 . (5)

Taking absolute values in (4) gives |γ|2(1+ |α|2) = |α|2|β|2, while from (5) we have
|α|2|β|2 = |α|2(1 + |γ|2). It follows that |α| = |γ|, or

γ = eiϕα . (6)

Suppose α ̸= 0. Then from (4) and (5) we can determine β, obtaining

β =
e−iθeiϕα

√
1 + |α|2

α
. (7)

On the other hand, if α = 0 then also γ = 0, hence from (5) and (3) we conclude
that n = β is a constant of absolute value 1. (Thus (7) remains in some sense valid
when α = 0.) Equations (3) and (7) give

n = αm+
e−iθeiϕα

√
1 + |α|2

α
and q = eiθm

√
1 + |α|2 + eiϕα ,

and then

m =
q − eiϕα

eiθ
√

1 + |α|2
.

Thus

P = m2p =
(q − eiϕα)2

e2iθ(1 + |α|2)
p =

(e−iϕq − α)2

1 + |α|2
e2i(ϕ−θ)p ,

and

Q =
n

m
= α+

eiϕα(1 + |α|2)
α(q − eiϕα)

=
α

α

(
αq + eiϕ

q − eiϕα

)
= −α

α

(
αe−iϕq + 1

α− e−iϕq

)
,

or
(P,Q) = Rq(π)I(α)Rp(2ϕ− 2θ)Rq(−ϕ)(p, q) (8)

in terms of the group. Equation (8) also holds for α = 0.

We still have the earlier case to analyze when m is constant. Equation (1) then
becomes

1 + |q|2 = |m|2(1 + |Q|2), (9)

and taking the Laplacian of both sides results in |q′| = |m||Q′|. Thus q = eiϕmQ+µ,
which inserted back into (9) gives

1 + |m|2|Q|2 + |µ|2 + 2Re{eiϕmµQ} = |m|2(1 + |Q|2) . (10)

Hence Re{eiϕmµQ} is constant, so Q is constant unless µ = 0. If µ = 0, then (10)
implies that |m| = 1, and the pair (P,Q) is a rotation of (p, q). More precisely,

(P,Q) = Rq(θ + ϕ)Rp(2θ)(p, q) , where m = eiθ .

If Q is constant then, in light of (9), q is also constant. In this case the minimal
surfaces associated with (p, q) and (P,Q) are planar, and up to a rotation of R3,

the Weierstrass–Enneper lifts f̃ and F̃ are analytic with equal Schwarzians.
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We describe the effects of the action of the group on the minimal surface associ-
ated with (p, q). First note that if ξ = reiθ then

I(ξ) = Rq(θ)Rp(2θ)I(r)Rq(−θ) .

Thus up to rotations of p and q we may assume that the parameter defining the
transformation I is real and nonnegative. Suppose, then, that

P =
(q − r)2

1 + r2
p , Q =

rq + 1

r − q
, r > 0 ,

and let (u, v, w), (U, V,W ) be the coordinates in R3 associated with (p, q) and
(P,Q), through the Weierstrass–Enneper equations. A simple calculation shows
that P (1 +Q2) = p(1 + q2), hence U = u. We also find that

P (1−Q2) = −
(
1− r2

1 + r2

)
p(1− q2)−

(
4r

1 + r2

)
pq,

and

PQ =

(
r

1 + r2

)
p(1− q2)−

(
1− r2

1 + r2

)
pq.

Hence

V = −
(
1− r2

1 + r2

)
v −

(
2r

1 + r2

)
w and W =

(
2r

1 + r2

)
v −

(
1− r2

1 + r2

)
w.

The map (v, w) 7→ (V,W ) is a 2-dimensional rotation, and so (u, v, w) 7→ (U, V,W )
is a rotation of R3.

We now examine the rotationsRp(θ) andRq(ϕ). We introduce the local harmonic
conjugates to u, v, and w in the form:

u+ iu∗ =

∫
p(1 + q2) dz, v∗ + iv =

∫
p(1− q2), w∗ + iw = 2

∫
pq dz .

A rotation of p by eiθ gives

U = u cos θ − u∗ sin θ , V = v cos θ + v∗ sin θ , W = w cos θ + w∗ sin θ .

Since

h =

∫
p dz and g =

∫
pq2 dz ,

it follows that

h = 1
2 ((u+ v∗) + i(u∗ + v)) and g = 1

2 ((u− v∗) + i(u∗ − v)).
12



A rotation of q by eiϕ affects g but not h, and we have

U = Re{h+ e2iϕg} = u cos2 ϕ− u∗ sinϕ cosϕ+ v sinϕ cosϕ+ v∗ sin2 ϕ ,

V = Im{h− e2iϕg} = −u sinϕ cosϕ+ u∗ sin2 ϕ+ v cos2 ϕ+ v∗ sinϕ cosϕ ,

W = Im{eiϕ(w∗ + iw)} = w cosϕ+ w∗ sinϕ .

Since each component U, V,W also has a local harmonic conjugate, one can view
the elements of G as linear maps from (u, v, w, u∗, v∗, w∗) to (U, V,W,U∗, V ∗,W ∗),
followed by projection onto the first three components. In this identification, it
is not difficult to see that the action in 6 dimensions is orthogonal, showing, for
example, that a linear change in the components u, v will not arise from an element
in G unless it is a rotation. On the other hand, one can verify directly that a
rotation (u, v) 7→ (u cos θ− v sin θ, u sin θ+ v cos θ) is the result of applying Rp(−θ)
and Rq(θ). Since for a real parameter, the transformation I is a rotation in the
(v, w)-plane, it follows that with elements in G we can recover all rotations of 3-
space.

We mention that if (u, v, w) is a conformal parametrization of a minimal sur-
face by harmonic functions then their harmonic conjugates u∗, v∗, w∗ parametrize
conformally a minimal surface known in the literature as the adjoint surface. The
Cauchy–Riemann equations imply that a minimal surface and its adjoint surface
are isometric. An interesting observation is that a minimal surface and its adjoint
have the same tangent plane at corresponding points. We do not have a clear geo-
metric description of the action of the group G in general when both the surface
and its adjoint are involved in the equations.

§4. Geometric derivation of the Schwarzian formula.

The link between harmonic and conformal mappings allows us to introduce the
Schwarzian derivative as developed in [9] for conformal changes of metrics and
conformal mappings of Riemannian manifolds. Let (M,g) be an n-dimensional
Riemannian manifold, n ≥ 2. A conformal metric ĝ is a multiple of g by a positive
smooth function, called the conformal factor. Write this in the form ĝ = e2σg. Two
conformal metrics are homothetic if the conformal factor is a positive constant. The
Schwarzian tensor of σ (or of ĝ) is defined as

Bg(σ) = Hess(σ)− dσ ⊗ dσ − 1
n (∆σ − ∥grad σ∥2)g , (11)

where the metric-dependent quantities (the Hessian, Laplacian and gradient) are
computed with respect to g. The Schwarzian tensor Bg(σ) is a symmetric, traceless
2-tensor.

If f : (M,g) → (M ′,g′) is a conformal local diffeomorphism between Riemann-
ian manifolds, with f∗g′ = e2σg , then its Schwarzian derivative is defined as the
tensor Sgf = Bg(σ). A Möbius transformation is a conformal diffeomorphism with
Sgf = 0. This includes the usual Möbius transformations in two dimensions as a
special case.

13



We now make the following definition, which applies when the complex dilatation
is (locally) the square of an analytic function.

Definition. Let f be a harmonic mapping of a domain Ω, let f̃ : Ω → R3 be its
Weierstrass–Enneper lift to a minimal surface, and let ρf |dz| be the corresponding
conformal metric. Then the Schwarzian derivative of f is defined by

Sf = Sg0 f̃ = Bg0(log ρf ) ,

where g0 is the Euclidean metric.

In [9] it was assumed that the source and target manifolds have the same di-
mension, but it is clear that the definition of the Schwarzian applies in the present
situation.

In two dimensions and for conformal mappings in the Euclidean metric, it is
helpful to represent the tensor Bg0(log ρf ) in standard coordinates as a 2× 2 sym-
metric, traceless matrix. If f(z) is analytic, then ρf (z) = |f ′(z)| and one can show
directly from (1) that

Sg0f =

(
Re{S(f)} −Im{S(f)}
−Im{S(f)} −Re{S(f)}

)
,

where S(f) now denotes the classical Schwarzian derivative,

S(f) = (f ′′/f ′)′ − 1
2 (f

′′/f ′)2 .

In general, the Schwarzian tensor of a conformal metric e2σ|dz|2 relative to the
Euclidean metric is given by a matrix of the form(

a −b
−b −a

)
,

where

a+ ib = 2(σzz − σ2
z) .

This natural identification of the tensor with a complex number provides the for-
mula

S(f) = 2
{
(log ρ)zz − ((log ρ)z)

2
}

for the Schwarzian derivative of a harmonic mapping, which we have already ex-
plored in Section 2.

5. Proof of Theorem 3.
14



We now give the proof of Theorem 3. Suppose that Sf = SF ; that is,

Bg0(log ρf ) = Bg0(log ρF ) , (12)

where g0 is the Euclidean metric. We approach the problem of solutions of this
equation via linearizing, somewhat as is done for the Schwarzian of analytic func-
tions in the classical setting. For background and the general theory supporting
the following discussion we refer to [9].

There is an addition formula for the tensor B given in [9]. In its general form it
says that

Bg0(φ+ σ) = Bg0(φ) +Bg(σ) ,

where g = e2φg0. (This is a generalization of the chain rule for the Schwarzian of
the composition of two analytic functions.) We apply this when g0 is the Euclidean
metric, when the conformal metric is

g = ρ2f g0 ,

and when

φ = log ρf and σ = log ρF − log ρf .

From (12) we then obtain

Bg(log ρF − log ρf ) = 0. (13)

The change of variable

u =
ρf
ρF

converts (13) to the linear equation

Hessu = 1
2 (∆u)g , (14)

where the Hessian and Laplacian are computed with respect to the metric g.

The existence of a nonconstant solution to (14) has strong consequences for the
metric. In the form we need, they derive from the following lemma. A more general
version of this result is in [9], but we will give the proof of this case here to illustrate
the methods.

Lemma 1. Let u be a solution to equation (14). Then in a neighborhood of a point
where grad u ̸= 0,

(a) the integral curves to grad u are geodesics; and
(b) the orthogonal trajectories have constant geodesic curvature.
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Proof of lemma. Let ∇ denote covariant differentiation in the metric g, and let T
and N be orthonormal vector fields on a neighborhood of a point where grad u ̸= 0,
with T in the direction of grad u. We note some simple, general identities for the
covariant derivatives of T and N :

∇TT = αN, ∇NN = βT, ∇TN = −αT, ∇NT = −βN,

where α and β are functions on the neighborhood. These follow from differentiating
the orthonormality conditions in the T and N directions. Under the assumptions of
the lemma, we claim that actually ∇TT = 0 on the neighborhood; i.e., that α = 0.
This will prove part (a), since ∇TT = κN along a T -curve (an integral curve for
grad u), where κ is the geodesic curvature. To deduce this we compute

∇TT = ∇T

(
grad u

||grad u||

)
=

1

∥grad u∥
∇T (grad u) + T

(
1

∥grad u∥

)
grad u ,

hence

α = g(∇TT,N) =
1

∥grad u∥
g(∇T (grad u), N) =

1

∥grad u∥
Hess u(T,N) = 0 ,

by (14). An additional consequence is that ∇TN = 0.
We turn now to part (b). Since ∇NN = βT , we need to show that β is constant

in the N -direction. As before we compute

∇NT = ∇N

(
grad u

∥grad u∥

)
=

1

∥grad u∥
∇N (grad u) +N

(
1

∥grad u∥

)
grad u ,

so that

β = −g(∇NT,N) = − 1

∥grad u∥
Hess u(N,N) = − 1

2∥grad u∥
∆u .

Now,

N(∥grad u∥2) = 2g(∇N (grad u), grad u) = 2Hess u(grad u,N) = 0 ,

and hence ∥grad u∥ is constant in the N -direction. Furthermore,

T (∥grad u∥2) = 2g(∇T (grad u), grad u) = 2Hess u(grad u, T ) = ∥grad u∥∆u ,

so we have the expression

∆u =
1

∥grad u∥
T (∥grad u∥) .

16



We will derive N(∆u) = 0, thus showing that ∆u is constant in the N -direction
and completing the proof. For this, note first that

N(∆u) = N

(
1

∥grad u∥

)
T (∥grad u∥2) + 1

∥grad u∥
NT (∥grad u∥2)

=
1

∥grad u∥
NT (∥grad u∥2) ,

because ∥grad u∥ is constant in the N -direction. But now, using NT − TN =
∇NT −∇TN = ∇NT = −βN , we obtain

NT (∥grad u∥2) = (TN +∇NT )(∥grad u∥2) = (TN − βN)(∥grad u∥2) = 0 ,

which completes the proof of Lemma 1.

Lemma 1 shows that, unless u is constant, there exist a neighborhood and a
network of T and N curves, briefly a (T,N)-rectangle, on which g is given by the
warped product metric

dr2 + ℓ(r)2dθ2 ,

where ℓ(r) is the length along an integral curve of N as a function of the distance
r along integral curves of T . The curvature of this metric is simply

K(r) = −ℓ
′′(r)

ℓ(r)
,

a function only of r.
It now follows that there is a conformal model of this metric, λ2|dζ|2 — not

(necessarily) the original conformal metric g = ρ2f |dz|2 — in which the conformal

factor λ is radial ; i.e., a function of |ζ|. In this model the T -curves correspond
to (Euclidean) polar rays and the N -curves to Euclidean circles |ζ| = const. To
establish the isometry (locally) between dr2 + ℓ(r)2dθ2 and λ2(|ζ|)|dζ|2, it suffices
to ensure that the curvatures of the two metrics are equal. This condition is the
existence of a local solution of the equation

−λ−2

((
λ′

λ

)′

+
1

|ζ|
λ′

λ

)
= K(r) ,

where

r =

∫ |ζ|

|ζ0|
λ(s) ds ;

different choices of the initial value |ζ0| correspond to homothetic changes in the
metric λ|dζ|.

To summarize, we have an isometry z = ȷ(ζ) of a region of the ζ-plane with
the radial metric λ(|ζ|)2|dζ|2 to a (T,N)-rectangle in the z-plane with the metric
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ρ2f (z)|dz|2. In particular, as ȷ is conformal in the Euclidean metric it is an analytic
function, and so

λ(|ζ|) = ρf (ȷ(ζ))|ȷ′(ζ)| ; i.e., log λ(|ζ|) = log ρf (ȷ(ζ)) + log |ȷ′(ζ)|.

Likewise we put

logµ(ζ) = log ρF (ȷ(ζ)) + log |ȷ′(ζ)| , so that µ(ζ)2|dζ|2 = ȷ∗(ρF (z)
2|dz|2).

Since ȷ is an isometry between g1 = λ(|ζ|)2|dζ|2 and g = ρ2f (z)|dz|2, it follows from
(13) that

Bg1(log(ρF ◦ ȷ)− log(ρf ◦ ȷ)) = 0 , or Bg1(log(ρF ◦ ȷ) + log |ȷ′| − log λ) = 0 ;

that is,
Bg1(log µ− log λ) = 0 .

The addition formula for B implies that

Bg0(log λ) = Bg0(log µ) ,

where g0 is the Euclidean metric. As before, v = λ/µ is a solution of

Hess v = 1
2 (∆v)g1 , (15)

where the Hessian and Laplacian are computed with respect to g1.
Now, because λ is radial the metric g1 = λ(|ζ|)2|dζ|2 is a warped product metric;

if R =
∫
λ(|ζ|) d|ζ|, then it is just

dR2 + ((R′)2|ζ|2)dθ2.

We are now in a position to apply Theorem 5.3 in [9], which gives a precise descrip-
tion of the form of solutions to (15) in a warped product metric. According to that
theorem there are two cases:

(i) All solutions are functions only of the variable in the first term in the warped
product, in this case |ζ|.

(ii) The metric g1 has constant curvature, in which case some additional solu-
tions may occur.

We will deal with (ii) at the end of the section; as we have seen before, constant
curvature means zero curvature in the context of harmonic maps, so this case will
be easy to analyze.

Suppose, then, that v is radial. Since λ is radial, so therefore is µ. It follows
from the relation ρ = |h′|+ |g′| that, except at isolated points, the conformal factors
ρf and ρF are sums of squares of two analytic functions, so the same must be true
of λ and µ (incorporating the factor |ȷ′|). Determining all such possibilities can be
phrased as a problem in complex analysis. We put it this way:
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Lemma 2. Let ϕ(ζ) and ψ(ζ) be analytic in a domain Ω, and suppose that |ϕ(ζ)|2+
|ψ(ζ)|2 depends only on |ζ|. Then there exist a unitary matrix U , complex numbers
A and B, and real numbers α and β such that(

ϕ(ζ)
ψ(ζ)

)
= U

(
Aζα

Bζβ

)
.

We defer the proof to the end of this section. To apply the lemma, we have to
compute the Schwarzian tensor of a conformal metric λ|dζ| of the form

λ(ζ) = a|ζ|2α + b|ζ|2β ,

with a = |A|2, b = |B|2 as in the lemma. We find this to be

−ζ−2 α(α+ 1)a2|ζ|4α + β(β + 1)b2|ζ|4β + (4αβ − α(α− 1)− β(β − 1))ab|ζ|2(α+β)

(a|ζ|2α + b|ζ|2β)2
.

A second metric with conformal factor µ(ζ) = a′|ζ|2α′
+ b′|ζ|2β′

will have the same
Schwarzian if and only if the exponents are the same, say α′ = α, β′ = β, and
b′/a′ = b/a. In other words, the conformal metrics λ|dζ| and µ|dζ| are homothetic.
Returning to the earlier situation, we see that this implies ρf |dz| and ρF |dz| are
homothetic, as we were to show. If the metrics are homothetic, their curvatures are
equal and the Schwarzians of f and F are equal.

It remains to discuss the case (ii), where the metric g1 = λ2|dζ|2 has constant
curvature. But then so does ρ2f |dz|2, since they are isometric. Furthermore, because
the argument is symmetric in f and F , if we are not in the case considered already
it must also be that ρ2F |dz|2 has constant curvature. Hence the minimal surfaces

f̃(Ω) and F̃ (Ω) have constant curvature, which implies they are planar. Therefore,
as in the analysis of vanishing Schwarzians, the conformal factors are of the form

ρf = (1 + |q0|2)|p| and ρF = (1 + |Q0|2)|P | ,

where q0 and Q0 are constants. If h′ = p, H ′ = P , then we have S(h) = S(H)
(analytic Schwarzian), and hence H is an analytic Möbius transformation of h.
Conversely, if (p, q) and (P,Q) are related in this way, then the curvatures are zero
and S(f) = S(F ). This completes the proof of Theorem 3, subject to a proof of
Lemma 2.

Proof of Lemma 2. The lemma is easy to prove through straightforward use of
power series if one knows that ϕ and ψ are defined in a neighborhood of the origin;
in this case α and β are integers. Otherwise, choose a rectangle

R = {w = s+ it : s1 < s < s2 , t1 < t < t2}

that is mapped conformally onto a polar rectangle in Ω by ζ = ew. Abusing
the notation slightly, we then have two analytic functions ϕ(w) and ψ(w) on R
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with the property that |ϕ(s + it)|2 + |ψ(s + it)|2 is independent of t. We first
show that ϕ and ψ can be continued analytically to the entire strip s1 < s < s2,
−∞ < t < ∞. In this strip, |ϕ|2 + |ψ|2 will remain a function only of s, since
(∂/∂t)(|ϕ(s+ it)|2 + |ψ(s+ it)|2) already vanishes on an open set.

Let w0 = s0 + it0, w1 = s0 + i(t0 + τ) be two points in R with the same real
part. We consider the power series expansions of ϕ and ψ near w0 and w1:

ϕ(w) =
∞∑

n=0

an(w − w0)
n , ψ(w) =

∞∑
n=0

bn(w − w0)
n ,

ϕ(w) =
∞∑

n=0

An(w − w1)
n , ψ(w) =

∞∑
n=0

Bn(w − w1)
n .

The hypothesis |ϕ(w)|2 + |ψ(w)|2 = |ϕ(w + iτ)|2 + |ψ(w + iτ)|2 implies that

∞∑
n,m=0

(anam+bnbm)(w−w0)
n(w−w0)

m =
∞∑

n,m=0

(AnAm+BnBm)(w−w0)
n(w−w0)

m

for all w near w0. Hence

anam + bnbm = AnAm +BnBm (16)

for all n and m. In particular |an|2 + |bn|2 = |An|2 + |Bn|2, so that

max{|An|, |Bn|} ≤ |an|+ bn| and max{|an|, |bn|} ≤ |An|+ |Bn|.

We conclude that the radii of convergence of power series for ϕ and ψ, respectively,
do not depend on t, and this ensures that ϕ and ψ can be continued analytically to
the entire strip.

Next, the relation in (16) states that the set of vectors {(an, bn)} in C2 has
pairwise the same inner products as does the set of vectors {(An, Bn)}. Hence
there is a unitary matrix V with(

An

Bn

)
= V

(
an
bn

)
,

and from this we can write(
ϕ(w + iτ)
ψ(w + iτ)

)
= V

(
ϕ(w)
ψ(w)

)
for w in a neighborhood of w0.

Now since V is unitary, it can be diagonalized via conjugation by another unitary
matrix: (

e2πiθ1 0
0 e2πiθ2

)
=WVW ∗ , W unitary.
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Define analytic functions Φ(w) and Ψ(w) in the strip by(
Φ(w)
Ψ(w)

)
=W

(
ϕ(w)
ψ(w)

)
.

Then for w in a neighborhood of w0 we have

Φ(w + iτ) = e2πiθ1Φ(w) and Ψ(w + iτ) = e2πiθ2Ψ(w) .

Here θ1 and θ2 depend on τ . If we fix τ = 2π and multiply Φ and Ψ by e−θ1w

and e−θ2w, respectively, we obtain analytic functions that are 2πi - periodic in the
strip. We use this fact to write

Φ(w) = e−θ1w
∞∑

n=−∞
αne

2πnw , Ψ(w) = e−θ2w
∞∑

n=−∞
βne

2πnw ,

so that

|Φ(s+ it)|2 + |Ψ(s+ it)|2 = e2θ1s
∑
n,m

αnαme
2π(n+m)se2πi(n−m)t

+ e2θ2s
∑
n,m

βnβme
2π(n+m)se2πi(n−m)t .

(17)

Since |Φ|2 + |Ψ|2 = |ϕ|2 + |ψ|2 (because the pairs of functions are related by a
unitary transformation) the sum in (17) is still a function only of s. There are now
two possibilities:

(i) θ1 = θ2 and αnαm + βnβm = 0 for all n ̸= m .
(ii) θ1 ̸= θ2 and αnαm = βnβm = 0 for all n ̸= m .

In case (ii) each sum in (17) consists of just one term. In case (i) there are at most
two indices for which the pair (αn, βn) is not (0, 0), and they satisfy the relation
in (i). To see this, suppose for example that α1 ̸= 0. Then from α1αn + β1βn = 0
all remaining pairs (αn, βn) must satisfy the single linear relation αn = cβn, c =

(β1/α1). For two pairs (αn, βn), (αm, βm) we would then have

0 = αnαm + βnβm = (1 + |c|2)βnβm .

This implies that there cannot be two pairs with nonzero second component, and
if the second component vanishes then so does the first.

In either case, unwinding the definitions back to ϕ and ψ leads directly to the
assertion of Lemma 2. This proves the lemma and completes the proof of Theorem
3.

21



References

1. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I

9 (1984), 3–25.
2. P. Duren, Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, Eng-

land, to appear.
3. P. Duren and W. R. Thygerson, Harmonic mappings related to Scherk’s saddle-tower minimal

surfaces, Rocky Mountain J. Math. 30 (2000), 555–564.
4. H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer.

Math. Soc. 42 (1936), 689–692.
5. Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55

(1949), 545–551.
6. Z. Nehari, Some criteria of univalence, Proc. Amer. Math. Soc. 5 (1954), 700–704.
7. Z. Nehari, Univalence criteria depending on the Schwarzian derivative, Illinois J. Math. 23

(1979), 345–351.

8. B. Osgood and D. Stowe, A generalization of Nehari’s univalence criterion, Comment. Math.
Helv. 65 (1990), 234–242.

9. B. Osgood and D. Stowe, The Schwarzian derivative and conformal mapping of Riemannian

manifolds, Duke Math. J. 67 (1992), 57–99.
10. R. Osserman, A Survey of Minimal Surfaces, Second Edition, Dover Publications, New York,

1986.
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